Saturday, June 25, 2011
Regex Expression Testing Online
While developing applications you may want to validate the input string such as email, age, url or any other types. For this purpose, regex expression is the best choice. For instance, if you want to validate an input string just contains only number, you can use this pattern "^[0-9]+$". The thing is how can you test your pattern with new validation. If you don't want to write code and run again and again, you can use some regex expression testing tool. Here is one of very good site for testing regex expression "Regex Expression Online".
Tuesday, May 10, 2011
Head Pose Estimation by using POSIT in OpenCV
I want to use OpenCV functions to do "Head Pose Estimation", I found an interesting post by "Roy" at http://www.morethantechnical.com/2010/03/19/quick-and-easy-head-pose-estimation-with-opencv-w-code.
In his post, OpenCV solvePnP was used in order to calculate fundamental matrix that can be used to map 3D points in model to 2D point in images. But I found OpenCV also provides POSIT implementation and very nice POSIT tutorial at http://opencv.willowgarage.com/wiki/Posit. So I decide to use "Roy" data and apply to POSIT function of OpenCV.
In his post, OpenCV solvePnP was used in order to calculate fundamental matrix that can be used to map 3D points in model to 2D point in images. But I found OpenCV also provides POSIT implementation and very nice POSIT tutorial at http://opencv.willowgarage.com/wiki/Posit. So I decide to use "Roy" data and apply to POSIT function of OpenCV.
#include <cxcore.h> #include <cv.h> #include <highgui.h> using namespace std; using namespace cv; #define FOCAL_LENGTH 1000 #define CUBE_SIZE 10 static const char* IMAGE_DATA_PATH = "/Users/mhrinc/Desktop/image_data/"; #define IMAGE_EXTENSION ".jpeg" #define DATA_EXTENSION ".txt" std::vector<CvPoint3D32f> modelPoints; std::vector<CvPoint3D32f> glassesPoints; void getImagePath(char* result,const char* imageFileName) { sprintf(result,"%s%s%s", IMAGE_DATA_PATH, imageFileName,IMAGE_EXTENSION); } void getDataPath(char* result,const char* dataFileName) { sprintf(result,"%s%s%s", IMAGE_DATA_PATH, dataFileName,DATA_EXTENSION); } vector<const char* > listOfImages() { vector<const char* > arrayOfImages; //Man arrayOfImages.push_back("man/barack_obama_1"); arrayOfImages.push_back("man/barack_obama_2"); arrayOfImages.push_back("man/bill-gates_1"); arrayOfImages.push_back("man/bill-gates_2"); arrayOfImages.push_back("man/david_beckham_1"); arrayOfImages.push_back("man/david_beckham_2"); arrayOfImages.push_back("man/nguyen_tan_dung_1"); arrayOfImages.push_back("man/nguyen_tan_dung_2"); arrayOfImages.push_back("man/bill_clinton_1"); arrayOfImages.push_back("man/bill_clinton_2"); //Woman arrayOfImages.push_back("woman/britney_spears_1"); arrayOfImages.push_back("woman/cheryl_cole_2"); arrayOfImages.push_back("woman/jang_nara_1"); arrayOfImages.push_back("woman/kim_tae_hee_2"); arrayOfImages.push_back("woman/britney_spears_2"); arrayOfImages.push_back("woman/harry_clinton_1"); arrayOfImages.push_back("woman/jang_nara_2"); arrayOfImages.push_back("woman/michelle_obama_1"); arrayOfImages.push_back("woman/cheryl_cole_1"); arrayOfImages.push_back("woman/harry_clinton_2"); arrayOfImages.push_back("woman/kim_tae_hee_1"); arrayOfImages.push_back("woman/michelle_obama_2"); arrayOfImages.push_back("woman/Angelina_Jolie_0002"); arrayOfImages.push_back("woman/Angelina_Jolie_0003"); arrayOfImages.push_back("woman/Angelina_Jolie_0004"); arrayOfImages.push_back("woman/Angelina_Jolie_0005"); arrayOfImages.push_back("woman/Angelina_Jolie_0006"); arrayOfImages.push_back("woman/Angelina_Jolie_0007"); arrayOfImages.push_back("woman/Angelina_Jolie_0008"); return arrayOfImages; } void loadNext(CvPOSITObject* positObject, const char* imageFileName) { int _w, _h; char buf[256] = {0}; getDataPath(&buf[0], imageFileName); cout << "Data:"<< buf << endl; vector<CvPoint2D32f > points; FILE* f; f = fopen(buf,"r"); fscanf(f,"%i",&_w); fscanf(f,"%i",&_h); cout << "widht:"<<_w<<",height:"<<_h<<endl; float _width = _w/2.0; float _height = _h/2.0; for(int i=0;i<7;i++) { int x,y; fscanf(f,"%d",&x); fscanf(f,"%d",&y); cout << x<<","<<y<<","; points.push_back(cvPoint2D32f(-_width+x,_height - y)); } cout << endl; fclose(f); getImagePath(&buf[0], imageFileName); cout << "Image:"<< buf << endl; Mat img = imread(buf); for(unsigned int i=0;i<points.size();i++) { CvPoint2D32f p = cvPoint2D32f(points[i].x+_width,_height-points[i].y); circle(img,p,2,Scalar(255,0,255),CV_FILLED); } //Estimate the pose CvMatr32f rotation_matrix = new float[9]; CvVect32f translation_vector = new float[3]; CvTermCriteria criteria = cvTermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 100, 1.0e-4f); cvPOSIT( positObject, &points[0], FOCAL_LENGTH, criteria, rotation_matrix, translation_vector ); cout << "\n-.- SOURCE IMAGE POINTS -.-\n"; for ( size_t p=0; p<points.size(); p++ ) cout << points[p].x << ", " << points[p].y << " \n"; cout << "\n-.- ESTIMATED ROTATION\n"; for ( size_t p=0; p<3; p++ ) cout << rotation_matrix[p*3] << " | " << rotation_matrix[p*3+1] << " | " << rotation_matrix[p*3+2] << "\n"; cout << "\n-.- ESTIMATED TRANSLATION\n"; cout << translation_vector[0] << " | " << translation_vector[1] << " | " << translation_vector[2] << "\n"; //Project the model points with the estimated pose std::vector<CvPoint2D32f> projectedPoints; for ( size_t p=0; p<glassesPoints.size(); p++ ) { CvPoint3D32f point3D; point3D.x = rotation_matrix[0] * glassesPoints[p].x + rotation_matrix[1] * glassesPoints[p].y + rotation_matrix[2] * glassesPoints[p].z + translation_vector[0]; point3D.y = rotation_matrix[3] * glassesPoints[p].x + rotation_matrix[4] * glassesPoints[p].y + rotation_matrix[5] * glassesPoints[p].z + translation_vector[1]; point3D.z = rotation_matrix[6] * glassesPoints[p].x + rotation_matrix[7] * glassesPoints[p].y + rotation_matrix[8] * glassesPoints[p].z + translation_vector[2]; CvPoint2D32f point2D = cvPoint2D32f( 0.0, 0.0 ); if ( point3D.z != 0 ) { point2D.x = FOCAL_LENGTH * point3D.x / point3D.z; point2D.y = FOCAL_LENGTH * point3D.y / point3D.z; } projectedPoints.push_back( point2D ); } cout << "\n-.- PROJECTED POINTS -.-\n"; for ( size_t p=0; p<projectedPoints.size(); p++ ) cout << projectedPoints[p].x << ", " << projectedPoints[p].y << " \n"; for(unsigned int i=0;i<projectedPoints.size();i++) { CvPoint2D32f p = cvPoint2D32f(projectedPoints[i].x+_width,_height-projectedPoints[i].y); circle(img,p,2,Scalar(255,0,0),CV_FILLED); } delete rotation_matrix; delete translation_vector; imshow("1", img); cvWaitKey(0); } int main(int argc, char** argv) { cout << "OpenCV POSIT tutorial" << endl; cout << "by Javier Barandiaran(jbarandiaran@gmail.com)" << endl; //Create the model pointss float xOffset = 36.9522f; float yOffset = -39.3518f; float zOffset = -47.1217f; modelPoints.push_back(cvPoint3D32f(xOffset+-36.9522f,yOffset+39.3518f,zOffset+47.1217f)); //l eye modelPoints.push_back(cvPoint3D32f(xOffset+35.446f,yOffset+38.4345f,zOffset+47.6468f)); //r eye modelPoints.push_back(cvPoint3D32f(xOffset+-0.0697709f,yOffset+18.6015f,zOffset+87.9695f)); //nose modelPoints.push_back(cvPoint3D32f(xOffset+-27.6439f,yOffset+-29.6388f,zOffset+73.8551f)); //l mouth modelPoints.push_back(cvPoint3D32f(xOffset+28.7793f,yOffset+-29.2935f,zOffset+72.7329f)); //r mouth float xx,yy; xx = 20, yy = 15; glassesPoints.push_back(cvPoint3D32f(xOffset+-36.9522f - xx,yOffset+39.3518f + yy,zOffset+47.1217f)); //l eye glassesPoints.push_back(cvPoint3D32f(xOffset+-36.9522f - xx,yOffset+39.3518f - yy,zOffset+47.1217f)); //l eye glassesPoints.push_back(cvPoint3D32f(xOffset+35.446f + xx,yOffset+38.4345f + yy,zOffset+47.6468f)); //r eye glassesPoints.push_back(cvPoint3D32f(xOffset+35.446f + xx,yOffset+38.4345f - yy,zOffset+47.6468f)); //r eye // modelPoints.push_back(Point3f(-87.2155f,15.5829f,-45.1352f)); //l ear // modelPoints.push_back(Point3f(85.8383f,14.9023f,-46.3169f)); //r ear cout << "\n-.- SOURCE MODEL POINTS -.-\n"; for ( size_t p=0; p<modelPoints.size(); p++ ) cout << modelPoints[p].x << ", " << modelPoints[p].y << ", " << modelPoints[p].z << "\n"; //Create the POSIT object with the model points CvPOSITObject* positObject; positObject = cvCreatePOSITObject( &modelPoints[0], (int)modelPoints.size() ); //Do processing int imageIndex = 0; vector<const char* > images = listOfImages(); while (imageIndex < images.size()) { const char* imageFileName = images.at(imageIndex); loadNext(positObject, imageFileName); imageIndex++; } cvReleasePOSITObject(&positObject); return 0; }
Building FFmpeg for IPhone
1. Check out FFmpeg source code
2. Check out gas-preprocessor
3. Run configure command
5. Add static libraries to Frameworks
6. Add libz.1.2.3
7. Add include path and library link path to XCode project
8. Write some example code
9. Build and run on real IPhone device
Enable MP3 encoder/decoder
1. Download opencore-amr
2. Run command
2. Check out gas-preprocessor
3. Run configure command
./configure --cc=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/arm-apple-darwin10-gcc-4.2.1 --as='gas-preprocessor.pl /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/arm-apple-darwin10-gcc-4.2.1' --sysroot=/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.2.sdk --enable-cross-compile --target-os=darwin --arch=arm --cpu=cortex-a8 --enable-pic --prefix=$HOME/Downloads/ffmpeg/iphone_build4. Create a project in Xcode
5. Add static libraries to Frameworks
6. Add libz.1.2.3
7. Add include path and library link path to XCode project
8. Write some example code
9. Build and run on real IPhone device
Enable MP3 encoder/decoder
1. Download opencore-amr
2. Run command
./configure --cc=/Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/arm-apple-darwin10-gcc-4.2.1 --as='gas-preprocessor.pl /Developer/Platforms/iPhoneOS.platform/Developer/usr/bin/arm-apple-darwin10-gcc-4.2.1' --sysroot=/Developer/Platforms/iPhoneOS.platform/Developer/SDKs/iPhoneOS3.2.sdk --enable-cross-compile --target-os=darwin --arch=arm --cpu=cortex-a8 --enable-pic --prefix=$HOME/Downloads/ffmpeg/iphone_build --enable-libopencore-amrnb --enable-version3 --extra-cflags=-I/Users/mhrinc/Downloads/ffmpeg --extra-ldflags=-L/Users/mhrinc/Downloads/ffmpeg/opencore-amrnb --disable-doc --disable-ffserver --disable-ffprobe --disable-swscale --disable-postproc --disable-avfilter --disable-dxva2 --disable-vdpau --disable-vaapi --disable-rdft --disable-mdct --disable-lpc --disable-huffman --disable-golomb --disable-fft --disable-dct --disable-aandct --disable-decoders --disable-encoders --disable-hwaccels --disable-muxers --disable-demuxers --disable-parsers --disable-bsfs --disable-protocols --disable-indevs --disable-outdevs --disable-filters \ --enable-decoder=wavpack --enable-encoder=libopencore_amrnb \ --enable-muxer=wav --enable-muxer=amr \ --enable-demuxer=wav --enable-demuxer=amr \ --enable-parser=wav --enable-parser=amr \
Face features detection with OpenCV
Object detection proposed by Paul Viola was implemented in OpenCV. We also can find some classifiers (working with Haar-like features) in OpenCV such as frontal face, profile face, eyes, nose and mouth. Each classifier is trained with multiple sample views of a particular object in the same size including positive images and negative images.
In this post, we will use built-in OpenCV functions to detect some features on the face. First, we will detect all faces that are available in an image. After that, on each detected face, we will apply object detection for eyes, nose and mouth. As we know, human faces are rigid object and eyes, nose and mouth are located on particular region of the face. We can localize those features by setting "Region Of Interest" on each face to reduce calculation.
Here is the code
And result:
In this post, we will use built-in OpenCV functions to detect some features on the face. First, we will detect all faces that are available in an image. After that, on each detected face, we will apply object detection for eyes, nose and mouth. As we know, human faces are rigid object and eyes, nose and mouth are located on particular region of the face. We can localize those features by setting "Region Of Interest" on each face to reduce calculation.
Here is the code
#include <iostream> #include "stdio.h" #include "opencv2/opencv.hpp" using namespace std; using namespace cv; CvHaarClassifierCascade *cascade_f; CvHaarClassifierCascade *cascade_e; CvHaarClassifierCascade *cascade_n; CvHaarClassifierCascade *cascade_m; CvMemStorage *storage; #define NUM_OF_FEATURES 5 CvPoint2D32f frontal_frame_features[NUM_OF_FEATURES]; int detectFaces(IplImage *img, CvRect *face); int detectFaceFeatures(IplImage *img, CvRect *face); int tracking(); static const double pi = 3.14159265358979323846; int main(int argc, char** argv) { IplImage *img; const char *file1 = "C:/c-dev/OpenCV-2.2.0/data/haarcascades/haarcascade_frontalface_alt.xml"; const char *file2 = "C:/c-dev/OpenCV-2.2.0/data/haarcascades/haarcascade_eye.xml"; const char *file3 = "C:/c-dev/OpenCV-2.2.0/data/haarcascades/haarcascade_mcs_nose.xml"; const char *file4 = "C:/c-dev/OpenCV-2.2.0/data/haarcascades/haarcascade_mcs_mouth.xml"; cascade_f = (CvHaarClassifierCascade*)cvLoad(file1, 0, 0, 0); cascade_e = (CvHaarClassifierCascade*)cvLoad(file2, 0, 0, 0); cascade_n = (CvHaarClassifierCascade*)cvLoad(file3, 0, 0, 0); cascade_m = (CvHaarClassifierCascade*)cvLoad(file4, 0, 0, 0); /* setup memory storage, needed by the object detector */ storage = cvCreateMemStorage(0); /* load image */ img = cvLoadImage("lena.jpg", CV_LOAD_IMAGE_COLOR); assert(cascade_f && cascade_e && storage); const char* name = "Features-Detection"; cvNamedWindow(name, 1); Mat frame = img; CvRect face; if (detectFaces(img, &face)) { if(detectFaceFeatures(img, &face)) { cout << "Features detected" << endl; } } cvShowImage(name, img); cvWaitKey(0); cvDestroyWindow(name); cvReleaseImage(&img); cvClearMemStorage(storage); return 0; } int detectFaces(IplImage *img, CvRect *face) { /* detect faces */ CvSeq *faces = cvHaarDetectObjects( img, cascade_f, storage, 1.1, 2, CV_HAAR_DO_CANNY_PRUNING, cvSize( 50, 50 ) ); if (faces->total == 0) { return 0; } CvRect* _face = (CvRect*)cvGetSeqElem(faces, 0); face->x = _face->x; face->y = _face->y; face->width = _face->width; face->height = _face->height; return 1; } int detectFaceFeatures(IplImage *img, CvRect *face) { int i; bool hasEyes = false; bool hasNose = false; bool hasMouth = false; cvRectangle(img, cvPoint(face->x, face->y), cvPoint(face->x + face->width, face->y + face->height), CV_RGB(255, 0, 0), 1, 8, 0); /* Set the Region of Interest*/ CvRect eyeROI = cvRect(face->x, face->y + (face->height/5.5), face->width, face->height/3.0); CvRect noseROI = cvRect(face->x, face->y + (face->height/2.5), face->width, face->height/3.0); CvRect mouthROI = cvRect(face->x, face->y + (face->height/1.5), face->width, face->height/2.5); CvRect *r; /* detect eyes */ cvSetImageROI(img, eyeROI); CvSeq* eyes = cvHaarDetectObjects( img, cascade_e, storage, 1.15, 3, 0, cvSize(25, 15)); cvResetImageROI(img); /* detect nose */ cvSetImageROI(img, noseROI); CvSeq* noses = cvHaarDetectObjects( img, cascade_n, storage, 1.1, 3, 0, cvSize(25, 15)); cvResetImageROI(img); /* detect Mouth */ cvSetImageROI(img, mouthROI); CvSeq* mouths = cvHaarDetectObjects( img, cascade_m, storage, 1.1, 3, 0, Size(30, 30)); cvResetImageROI(img); /* draw a rectangle for each eye found */ for( i = 0; i < (eyes ? eyes->total : 0); i++ ) { r = (CvRect*)cvGetSeqElem( eyes, i ); int x1 = r->x + eyeROI.x; int y1 = r->y + eyeROI.y; int x2 = x1 + r->width; int y2 = y1 + r->height; int xc = (x1 + x2)/2; int yc = (y1 + y2)/2; cvRectangle(img, cvPoint(x1, y1), cvPoint(x2, y2), CV_RGB(255, 0, 0), 1, 8, 0); cvCircle(img, cvPoint(xc, yc), 2, CV_RGB(255,0,0), 2, 8, 0); float fX = xc; float fY = yc; frontal_frame_features[i] = cvPoint2D32f(fX,fY); if (i==1) { hasEyes = true; } } /* draw a rectangle for each nose found */ for( i = 0; i < (noses ? noses->total : 0); i++ ) { r = (CvRect*)cvGetSeqElem( noses, i ); int x1 = r->x + noseROI.x; int y1 = r->y + noseROI.y; int x2 = x1 + r->width; int y2 = y1 + r->height; int xc = (x1 + x2)/2; int yc = (y1 + y2)/2; cvRectangle(img, cvPoint(x1, y1), cvPoint(x2, y2), CV_RGB(0, 255, 0), 1, 8, 0); cvCircle(img, cvPoint(xc, yc), 2, CV_RGB(255,0,0), 2, 8, 0); hasNose = true; float fX = xc; float fY = yc; frontal_frame_features[2] = cvPoint2D32f(fX,fY); } /* draw a rectangle for each mouth found */ for( i = 0; i < (mouths ? mouths->total : 0); i++ ) { int margin_left = 10; int margin_right = 0; r = (CvRect*)cvGetSeqElem( mouths, i ); int x1 = r->x + mouthROI.x; int y1 = r->y + mouthROI.y; int x2 = x1 + r->width; int y2 = y1 + r->height; int x1c = x1 + margin_left; int y1c = (y1 + y2)/2; int x2c = x2 - margin_right; int y2c = (y1 + y2)/2 - 5; cvRectangle(img, cvPoint(x1, y1), cvPoint(x2, y2), CV_RGB(0, 0, 255), 1, 8, 0); cvCircle(img, cvPoint(x1c, y1c), 2, CV_RGB(255,0,0), 2, 8, 0); cvCircle(img, cvPoint(x2c, y2c), 2, CV_RGB(255,0,0), 2, 8, 0); hasMouth = true; frontal_frame_features[3] = cvPoint2D32f(x1c,y1c); frontal_frame_features[4] = cvPoint2D32f(x2c,y2c); } return (hasEyes && hasNose && hasMouth)?1:0; }
And result:
Monday, May 9, 2011
OpenCV with Eclipse CDT and MinGW
Prerequisites:
Time to code
- CMake http://www.cmake.org/
- MinGW with MSYS http://www.mingw.org/
- OpenCV source code http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.2/
- Eclipse CDT http://www.eclipse.org/cdt/
- Open MSYS and go to OpenCV folder
cd C:/c-dev/OpenCV-2.2.0
- Run CMake command to generate "Build files"
cmake -G "Unix Makefiles" .
- Build OpenCV
make make install
- Add bin directory to your PATH
C:\c-dev\OpenCV-2.2.0\bin
- Create new project
- Add header path
- Add library path
- Add libraries
Time to code
#include <iostream> #include "opencv2/opencv.hpp" int main(int argc, char** argv) { cout << "Hello OpenCV" << endl; IplImage* img = cvLoadImage("lena.jpg", CV_LOAD_IMAGE_COLOR); if (img) { cvShowImage("Hello OpenCV", img); cvWaitKey(0); cvDestroyAllWindows(); } return 0; }
Subscribe to:
Posts (Atom)